Sistemas Lineares

Introdução aos sistemas lineares

Esta página trata sobre equações lineares e inicia mostrando uma aplicação de matrizes e sistemas lineares. As equações lineares assim como os sistemas de equações são muito utilizados no cotidiano das pessoas.

Exemplo: Uma companhia de navegação tem três tipos de recipientes A, B e C, que carrega cargas em containers de três tipos I, II e III. As capacidades dos recipientes são dadas pela matriz:

 

Tipo do Recipiente I II III
A 4 3 2
B 5 2 3
C 2 2 3

Quais são os números de recipientes x1, x2 e x3 de cada categoria A, B e C, se a companhia deve transportar 42 containers do tipo I, 27 do tipo II e 33 do tipo III?

Montagem do sistema linear

4 x1 + 5 x2 + 2 x3 = 42
3 x1 + 3 x2 + 2 x3 = 27
2 x1 + 2 x2 + 2 x3 = 33

Arthur Cayley (1821-1895): Matemático inglês nascido em Richmond, diplomou-se no Trinity College de Cambridge. Na sua vida, Cayley encontrou rivais em Euler e Cauchy sendo eles os três maiores produtores de materiais no campo da Matemática. Em 1858, Cayley apresentou representações por matrizes. Segundo ele, as matrizes são desenvolvidas a partir da noção de determinante, isto é, a partir do exame de sistemas de equações, que ele denominou: o sistema. Cayley desenvolveu uma Álgebra das matrizes quadradas em termos de transformações lineares homogêneas.


Equação linear

É uma equação da forma

a11 x1 + a12 x2 + a13 x3 + ... + a1n xn = b1

onde

  • x1, x2, ..., xn são as incógnitas;

  • a11, a12, ...,a1n são os coeficientes (reais ou complexos);

  • b1 é o termo independente (número real ou complexo).

Exemplos de equações lineares

  1. 4 x + 3 y - 2 z = 0

  2. 2 x - 3 y + 0 z - w = -3

  3. x1 - 2 x2 + 5 x3 = 1

  4. 4i x + 3 y - 2 z = 2-5i

Notação: Usamos R[x] para a raiz quadrada de x>0.

Exemplos de equações não-lineares

  1. 3 x + 3y R[x] = -4

  2. x2 + y2 = 9

  3. x + 2 y - 3 z w = 0

  4. x2 + y2 = -9


Solução de uma equação linear

Uma sequência de números reais (r1,r2,r3,r4) é solução da equação linear

a11 x1 + a12 x2 + a13 x3 + a14 x4 = b1

se trocarmos cada xi por ri na equação e este fato implicar que o membro da esquerda é identicamente igual ao membro da direita, isto é:

a11 r1 + a12 r2 + a13 r3 + a14 r4 = b1

Exemplo: A sequência (5,6,7) é uma solução da equação 2x+3y-2z=14 pois, tomando x=5, y=6 e z=7 na equação dada, teremos:

2×5 + 3×6 - 2×7 = 14


Sistemas de equações lineares

Um sistema de equações lineares ou sistema linear é um conjunto formado por duas ou mais equações lineares. Um sistema linear pode ser representado na forma:

a11 x1 + a12 x2 +...+ a1n xn = b1
a21 x1 + a22 x2 +...+ a2n xn = b2
... ... ... ...
am1 x1 + am2 x2 +...+ amn xn = bn

onde

  • x1, x2, ..., xn são as incógnitas;

  • a11, a12, ..., amn são os coeficientes;

  • b1, b2, ..., bm são os termos independentes.


Solução de um sistema de equações lineares

Uma sequência de números (r1,r2,...,rn) é solução do sistema linear:

a11 x1 + a12 x2 +...+ a1n xn = b1
a21 x1 + a22 x2 +...+ a2n xn = b2
... ... ... ...
am1 x1 + am2 x2 +...+ amn xn = bn

se satisfaz identicamente a todas as equações desse sistema linear.

Exemplo: O par ordenado (2,0) é uma solução do sistema linear:

2x + y = 4
x + 3y = 2
x + 5y = 2

pois satisfaz identicamente a todas as equações do mesmo, isto é, se substituirmos x=2 e y=0, os dois membros de cada igualdade serão iguais em todas as equações.


Consistência de Sistemas Lineares

O número de soluções de um sistema linear determina a sua classificação de duas maneiras com relação à sua consistência:

Sistema possível ou consistente: Quando tem pelo menos uma solução.

  1. Se tem uma única solução, o sistema é determinado.

  2. Se tem mais que uma solução, o sistema é indeterminado.

Sistema impossível ou inconsistente: Se não admite qualquer solução.


Exemplos de sistemas com respeito às suas soluções

Sistema com uma única solução: As equações lineares abaixo representam duas retas no plano cartesiano que têm o ponto (3,-2) como interseção.

x + 2y = -1
2x - y = 8

Sistema com infinitas soluções:As equações lineares representam retas paralelas sobrepostas no plano cartesiano, logo existem infinitos pontos que satisfazem a ambas as equações (pertencem a ambas as retas).

4x + 2y = 100
8x + 4y = 200

Sistema que não tem solução: As equações lineares representam retas paralelas no plano cartesiano, logo, não existem pontos que pertençam às duas retas.

x + 3y = 4
x + 3y = 5


Sistemas equivalentes

Dois sistemas são equivalentes se admitem a mesma solução.

Exemplo: São equivalentes os sistemas S1 e S2 indicados abaixo:

 

S1 3x + 6y = 42
2x - 4y = 12
S2 1x + 2y = 14
1x - 2y = 6

pois eles admitem a mesma solução x=10 e y=2.

Notação: Quando dois sistemas S1 e S2 são equivalentes, usamos a notação S1~S2.


Operações elementares sobre sistemas lineares

Existem três tipos de operações elementares que podem ser realizadas sobre um sistema linear de equações de forma a transformá-lo em um outro sistema equivalente mais simples que o anterior. Na sequência trabalharemos com um exemplo para mostrar como funcionam essas operações elementares sobre linhas. O segundo sistema (o que aparece à direita) já mostra o resultado da ação da operação elementar. Nas linhas iniciais de cada tabela, você encontra a operação que foi realizada.

  1. Troca de posição de duas equações do sistema

    Troca a Linha 1 com a Linha 3
    x + 2y - z = 2
    2x-3y+2z=0
    4x + y - 5z = 9
    ~ 4x + y - 5z = 9
    2x-3y+2z=0
    x + 2y - z = 2
  2. Multiplicação de uma equação por um número não nulo

    Multiplica a Linha 1 pelo número 3
    x + 2y - z = 2
    2x-3y+2z=0
    4x+y-5z=9
    ~ 3x + 6y - 3z = 6
    2x-3y+2z=0
    4x+y-5z=9
    A equação resultante fica na linha 1
  3. Adição de duas equações do sistema

    Adição da Linha 2 com a Linha 3
    x+2y-z=2
    2x -3y + 2z = 0
    4x + y - 5z = 9
    ~ 3x+6y-3z=6
    2x-3y+2z=0
    6x - 2y - 3z = 9
    A equação resultante fica na linha 3


Resolução de sistemas lineares por escalonamento

Com o auxílio das três Operações Elementares sobre linhas, podemos resolver sistemas lineares. Vamos mostrar como funciona este processo através de um exemplo.

Exemplo: Consideremos o sistema com 3 equações e 3 incógnitas.

3x + y + z = 20
2x - y - z = -15
-4x + y -5z = -41

Observação: Usamos Li+Lj->Lj para indicar a soma da linha i com a linha j com o resultado na linha j. Usamos k Li->Li, para indicar que multiplicamos a linha i pela constante k e o resultado ficou na linha i.

 

Passo 1: L1-L2->L1
3x + 1y + 1z = 20
2x - 1y - 1z = -15
-4x+1y-5z=-41
~ 1x + 2y + 2z = 35
2x-1y-1z=-15
-4x+1y-5z=-41


 

Passo 2: L2-2.L1->L2
1x + 2y + 2z = 35
2x - 1y - 1z = -15
-4x+1y-5z=-41
~ 1x+2y+2z=35
0x - 5y - 5z = -85
-4x+1y-5z=-41


 

Passo 3: L3+4.L1->L3
1x + 2y + 2z = 35
0x-5y-5z=-85
-4x + 1y - 5z = -41
~ 1x+2y+2z=35
0x-5y-5z=-85
0x + 9y + 3z = 99


 

Passo 4:(-1/5)L2->L2,(1/3)L3->L3
1x+2y+2z=35
0x - 5y - 5z = -85
0x + 9y + 3z = 99
~ 1x+2y+2z=35
0x + 1y + 1z = 17
0x + 3y + 1z = 33


 

Passo 5: L3-3.L2->L3
1x+2y+2z=35
0x + 1y + 1z = 17
0x + 3y + 1z = 33
~ 1x+2y+2z=35
0x+1y+1z=17
0x + 0y - 2z = -18


 

Passo 6: (-1/2)L3->L3
1x+2y+2z=35
0x+1y+1z=17
0x + 0y - 2z = -18
~ 1x+2y+2z=35
0x+1y+1z=17
0x + 0y + 1z = 9


 

Passo 7: L2-L3->L2
1x+2y+2z=35
0x + 1y + 1z = 17
0x + 0y + 1z = 9
~ 1x+2y+2z=35
0x + 1y + 0z = 8
0x+0y+1z=9


 

Passo 8: L1-2.L2-2.L3->L1
1x + 2y + 2z = 35
0x + 1y + 0z = 8
0x + 0y + 1z = 9
~ 1x + 0y + 0z = 1
0x+1y+0z=8
0x+0y+1z=9


 

Passo 9: Simplificar coeficientes
1x + 0y + 0z = 1
0x + 1y + 0z = 8
0x + 0y + 1z = 9
~ x = 1
y = 8
z = 9

Após o escalonamento, observamos que a solução obtida é exatamente fornecida pelo último sistema.


Sistemas lineares homogêneos

Um sistema linear é homogêneo quando os termos independentes de todas as equações são nulos. Todo sistema linear homogêneo admite pelo menos a solução trivial, que é a solução identicamente nula. Assim, todo sistema linear homogêneo é possível. Este tipo de sistema poderá ser determinado se admitir somente a solução trivial ou indeterminado se admitir outras soluções além da trivial.

Exemplo: O sistema

2x - y + 3z = 0
4x + 2y - z = 0
x - y + 2z = 0

é determinado, pois possui a solução x=0, y=0 e z=0.


Regra de Cramer

Esta regra depende basicamente sobre o uso de determinantes. Para indicar o determinante de uma matriz X, escreveremos det(X).

Seja um sistema linear com n equações e n incógnitas:

a11 x1 + a12 x2 +...+ a1j xj +...+ a1n xn = b1
a21 x1 + a22 x2 +...+ a2j xj +...+ a2n xn = b2
... ... ... ...
an1 xn + an2 xn +...+ anj xj +...+ ann xn = bn

A este sistema podemos associar algumas matrizes:

  • Matriz dos coeficientes: Formada pelos coeficientes das incógnitas do sistema, aqui indicada pela letra A.

    Matriz dos coeficientes
    a11 a12 ... a1j ... a1n
    a21 a22 ... a2j ... a2n
    ... ... ... ... ... ...
    an1 an2 ... anj ... ann
  • Matriz Aumentada do sistema: Formada todos os coeficientes das incógnitas do sistema e também pelos termos independentes.

    Matriz Aumentada
    a11 a12 ... a1j ... a1n b1
    a21 a22 ... a2j ... a2n b2
    ... ... ... ... ... ...
    an1 an2 ... anj ... ann bn
  • Matriz da incógnita xj: É a matriz Aj obtida ao substituirmos a coluna j (1<j<n) da matriz A, pelos termos independentes das equações do sistema.

    Matriz da incógnita xj
    a11 a12 ... b1 ... a1n
    a21 a22 ... b2 ... a2n
    ... ... ... ... ... ...
    an1 an2 ... bn ... ann

Quando as posições j=1,2,3 estão relacionadas com x1, x2 e x3 e substituídas pelas incógnitas x, y e z, é comum escrever Ax, Ay e Az.

Se det(A) é diferente de zero, é possível obter cada solução xj (j=1,...,n), dividindo det(Aj) por det(A), isto é:

xj = det(Aj) / det(A)

Se det(A)=0, o sistema ainda poderá ser consistente, se todos os determinantes nxn da matriz aumentada do sistema forem iguais a zero.

Um sistema impossível: Seja o sistema

2x + 3y + 4z = 27
1x - 2y + 3z = 15
3x + 1y + 7z = 40

A matriz A e a matriz aumentada Au do sistema estão mostradas abaixo.

 

2 3 4
1 -2 3
3 1 7
2 3 4 27
1 -2 3 15
3 1 7 40

Como det(A)=0, devemos verificar se todos os determinantes das sub-matrizes 3×3 da matriz aumentada são nulos. Se existir pelo menos um deles não nulo, o sistema será impossível e este é o caso pois é não nulo o determinante da sub-matriz 3x3 formada pelas colunas 1, 2 e 4 da matriz aumentada:

 

2 3 27
1 -2 15
3 1 40

Um sistema indeterminado: Consideremos agora o sistema (Quase igual ao anterior: trocamos 40 por 42 na última linha!)

2x + 3y + 4z = 27
1x - 2y + 3z = 15
3x + 1y + 7z = 42

A matriz A e a matriz aumentada Au do sistema, estão abaixo:

 

2 3 4
1 -2 3
3 1 7
2 3 4 27
1 -2 3 15
3 1 7 42

Aqui, tanto det(A)=0 como todos os determinantes das sub-matrizes 3×3 da matriz aumentada são nulos, então o sistema é possível e indeterminado. Neste caso, observamos que a última linha é a soma das duas primeiras e como estas duas primeiras dependem de x, y e z, você poderá encontrar as soluções, por exemplo, de x e y em função de z.

Um sistema com solução única: Seja o sistema

2x + 3y + 4z = 27
1x - 2y + 3z = 15
3x + 1y + 6z = 40

A matriz A e a matriz dos termos independentes do sistema estão indicados abaixo.

 

2 3 4
1 -2 3
3 1 6
27
15
40

Como det(A)=7, o sistema admite uma única solução que depende dos determinantes das matrizes Ax, Ay e Az, e tais matrizes são obtidas pela substituição 1a., 2a. e 3a. colunas da matriz A pelos termos independentes das três equações, temos:

 

Ax= 27 3 4
15 -2 3
40 1 6
Ay= 2 27 4
1 15 3
3 40 6
Az= 2 3 27
1 -2 15
3 1 40

Como det(Ax)=65, det(Ay)=1 e det(Az)=14, a solução do sistema é dada por:

x = det(Ax)/det(A) = 65/7
y = det(Ay)/det(A) = 1/7
z = det(Az)/det(A) = 14/7


 

ConstruídO por Paulo Reis. Atualizada em 24/mar/2011.